Nonsmooth Matrix Valued Functions Defined by Singular Values

نویسندگان

  • Defeng Sun
  • Jie Sun
چکیده

A class of matrix valued functions defined by singular values of nonsymmetric matrices are shown to have many properties analogous to matrix valued functions defined by eigenvalues of symmetric matrices. In particular, the (smoothed) matrix valued Fischer-Burmeister function is proved to be strongly semismooth everywhere. This result is also used to show the strong semismoothness of the (smoothed) vector valued Fischer-Burmeister function associated with the second order cone. The strong semismoothness of singular values of a nonsymmetric matrix is discussed and used to analyze the quadratic convergence of Newton’s method for solving the inverse singular value problem.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Nonsmooth Analysis of Singular Values. Part I: Theory

The singular values of a rectangular matrix are nonsmooth functions of its entries. In this work we study the nonsmooth analysis of functions of singular values. In particular we give simple formulae for the regular subdifferential, the limiting subdifferential, and the horizon subdifferential, of such functions. Along the way to the main result we give several applications and in particular de...

متن کامل

A General Scalar-Valued Gap Function for Nonsmooth Multiobjective Semi-Infinite Programming

For a nonsmooth multiobjective mathematical programming problem governed by infinitely many constraints‎, ‎we define a new gap function that generalizes the definitions of this concept in other articles‎. ‎Then‎, ‎we characterize the efficient‎, ‎weakly efficient‎, ‎and properly efficient solutions of the problem utilizing this new gap function‎. ‎Our results are based on $(Phi,rho)-$invexity‎,...

متن کامل

Nonsmooth Analysis of Singular Values. Part II: Applications

In this work we continue the nonsmooth analysis of absolutely symmetric functions of the singular values of a real rectangular matrix. Absolutely symmetric functions are invariant under permutations and sign changes of its arguments. We extend previous work on subgradients to analogous formulae for the proximal subdifferential and Clarke subdifferential when the function is either locally Lipsc...

متن کامل

Singular values of convex functions of matrices

‎Let $A_{i},B_{i},X_{i},i=1,dots,m,$ be $n$-by-$n$ matrices such that $‎sum_{i=1}^{m}leftvert A_{i}rightvert ^{2}$ and $‎sum_{i=1}^{m}leftvert B_{i}rightvert ^{2}$  are nonzero matrices and each $X_{i}$ is‎ ‎positive semidefinite‎. ‎It is shown that if $f$ is a nonnegative increasing ‎convex function on $left[ 0,infty right) $ satisfying $fleft( 0right)‎ ‎=0 $‎, ‎then  $$‎2s_{j}left( fleft( fra...

متن کامل

On the Sum of Superoptimal Singular Values

In this paper, we study the following extremal problem and its relevance to the sum of the so-called superoptimal singular values of a matrix function: Given an m × n matrix function Φ, when is there a matrix function Ψ * in the set A n,m k such that Z T trace(Φ(ζ)Ψ * (ζ))dm(ζ) = sup Ψ∈A n,m k ˛ ˛ ˛ ˛ Z T trace(Φ(ζ)Ψ(ζ))dm(ζ) ˛ ˛ ˛ ˛ ? The set A n,m k is defined by A n,m k def = n Ψ ∈ H 1 0 (Mn...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2002